Solving Equations with e and $\ln x$

We know that the natural log function $\ln(x)$ is defined so that if $\ln(a) = b$ then $e^b = a$. The common log function $\log(x)$ has the property that if $\log(c) = d$ then $10^d = c$. It's possible to define a logarithmic function $\log_b(x)$ for any positive base b so that $\log_b(e) = f$ implies $b^f = e$. In practice, we rarely see bases other than 2, 10 and e.

Solve for y:

- 1. $\ln(y+1) + \ln(y-1) = 2x + \ln x$
- 2. $\log(y+1) = x^2 + \log(y-1)$
- 3. $2 \ln y = \ln(y+1) + x$

Solve for x (hint: put $u = e^x$, solve first for u):

4.
$$\frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = y$$

5. $y = e^{x} + e^{-x}$

15/12/24 $I_{n}(y+1) + I_{n}(y-1) = 2\chi + I_{n}\chi$ $\ln(y+1)(y-1) = 2x + \ln x$ $(y+1)(y-1) = e^{2x+lnx}$ $y_{-1}^2 = e^{2x} e^{\ln x}$ $y^{2}-1 = e^{2\kappa} x$ $y^2 = \chi e^{\chi} f I$ yz0, $J = \pm \sqrt{xe^{2x} + 1}$ J= - xe2x + 1

2.
$$\log(9+1) = x^{2} + \log(9-1)$$

 $\log \frac{9+1}{9-1} = x^{2}$
 $\frac{9+1}{9-1} = 10^{x^{2}}$
 $\frac{9+1}{9-1} = 10^{x^{2}}$
 $\frac{10^{x^{2}}-19}{9} = 10^{x^{2}}$
 $(10^{x^{2}}-1) = 10^{x^{2}}$
 $y = \frac{10^{x^{2}}+1}{10^{x^{2}}-1}$

-

$$2 \ln y = \ln(y+1) + \chi$$

$$\ln y^{2} - \ln(y+1) = \chi$$

$$\ln \frac{y^{2}}{y+1} = \chi$$

$$\frac{y+1}{y+1} = e^{\chi}$$





